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The Green function used for analysing ship motions in waves is the velocity potential
due to a point source pulsating and advancing at a uniform forward speed. The
behaviour of this function is investigated, in particular for the case when the source
is located at or close to the free surface. In the far field, the Green function is
represented by a single integral along one closed dispersion curve and two open
dispersion curves. The single integral along the open dispersion curves is analysed
based on the asymptotic expansion of a complex error function. The singular and
highly oscillatory behaviour of the Green function is captured, which shows that
the Green function oscillates with indefinitely increasing amplitude and indefinitely
decreasing wavelength, when a field point approaches the track of the source point at
the free surface. This sheds some light on the nature of the difficulties in the numerical
methods used for predicting the motion of a ship advancing in waves.

1. Introduction
The potential flow generated by a source pulsating sinusoidally and moving with

constant horizontal velocity is fundamental to the analysis of the flow past a moving
ship and to the prediction of its motions in waves. The mathematical solution
associated with the linearized free-surface boundary condition, or the so-called ship-
motion Green function can be expressed as the sum of a simple (Rankine) source, a
double non-oscillatory Fourier integral which is significant only in the near field and
a single integral which is dominant in the far field. The second and third components
account for the free-surface effects. In particular, the last component has been a
major obstacle to the numerical solution of the ship-motion problem. The present
work aims to reveal some additional insight into the difficulty.

A special case is the Neumann–Kelvin steady flow problem where the source moves
forward only and has no pulsation. Based on the stationary phase method, it can be
shown that the single integral at the far field gives the well-known Kelvin wave pattern
confined inside the wedge bounded by two critical lines forming an angle of 38◦56′32′′
(see, for example, Lamb 1932). A similar case is that due to a moving concentrated
pressure. It was shown by Ursell (1960) that near the track of the pressure point
applied on the free surface, the wave elevation from the linearized theory oscillates
with indefinitely increasing amplitude and indefinitely decreasing wavelength. This
important result was later analysed in more detail by Euvrard (1983) and Ursell
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(1988). Some aspects of the numerical computation of this complicated function were
discussed by Clarisse & Newman (1994).

For the more general case of a point source both pulsating and advancing at a
uniform speed, similar behaviour can be expected when the source is located on the
free surface. Understanding of this behaviour is essential if the insight into the physics
of ship waves is to be improved. It is also crucially important in the development of
the computation code for predicting the ship motion in waves. Here we shall focus
our analysis on the behaviour of the wave near the track of the source. For the
steady case, Ursell (1960) used Peters’ expression (Peters 1949) for the wave field and
obtained the result by deforming the path of integration. Here the expression for the
wave field is very different from Peters’. A different approach is therefore used, which
is outlined below.

Noblesse & Chen (1995) decomposed the free-surface effect into a local non-
oscillatory component and a wave component. The wave component is expressed
as a single integral along the dispersion curves defined by the dispersion relation
associated with the linear free-surface boundary condition. The dispersion relation
usually defines three dispersion curves which can be classified as two open curves
along which the wavenumber is not bounded and a closed one along which the
wavenumber is finite. The integral then consists of three parts corresponding to
three dispersion curves: two indefinite ones with their limits tending to positive and
negative infinity respectively, and one definite integral. The last one exists only when
τ = Uω/g < 1/4, where U is the forward speed, ω the encounter frequency and
g the acceleration due to gravity. Although the integrand of the single integral is
not singular, care is needed for the two indefinite integrals, as the unbounded limit
can lead to highly oscillatory and singular behaviour. Indeed, the analysis by Chen
& Noblesse (1997) revealed a direct relationship between the geometrical properties
of a dispersion curve and important aspects of the corresponding far-field waves,
including wavelength, directions of wave propagation, phase and group velocities,
and cusp angles. Their work has established the link between the highly-oscillatory
and singular properties of the wave component and the open dispersion curves along
which two indefinite integrals are performed.

The analysis here is carried out through the leading terms of the wave component
associated with the open dispersion curves. The first leading term of the integrand
has a non-decaying amplitude while the second leading term is proportional to 1/a
where a is the integral variable. The difference between the original integrand and
these two leading terms is of order 1/a2 when |a| tends to infinity and the result is
finite. This means that the behaviour of a wave component can be analysed through
the two leading terms.

By making use of asymptotic properties of the complex error function, it is shown
that the Green function is highly oscillatory with indefinitely increasing amplitude and
indefinitely decreasing wavelength, when the field point approaches the track of the
source point located at the free surface. This peculiar behaviour of the ship-motion
Green function is demonstrated by numerical results in graphic form. Furthermore,
it is noted that when ω = 0 the result obtained here are consistent with that found
by Ursell (1960, 1988) for the steady Neumann–Kelvin problem.

2. Wave component and open dispersion curves
A moving Cartesian system Oxyz is defined in which x points in the direction of

forward speed and z upwards. The origin is located on the undisturbed free surface.
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The coordinates (x, y, z) are non-dimensionalized using a characteristic length L which
for a real ship problem is usually chosen as its length. The ship-motion Green function
G(ξ, x) is defined through φ = Re{Ge−iωt} where φ is the velocity potential at a point
ξ = (ξ, η, ζ) generated by a source of unit strength located at a point x = (x, y, z)
pulsating sinusoidally with frequency ω and advancing at constant speed U with the
coordinate system. This is a classical problem and details can be found in Wehausen
& Laitone (1960). Here we may write

G = GS + GF. (1)

GS is defined in terms of simple (Rankine) source

4πGS = −1/r + 1/r′ (2)

where r is the distance between ξ and x, and r′ the distance between ξ and the mirror
image of x with respect to the mean free-surface plane z = 0. The component GF in
equation (1) is introduced to satisfy the linear free-surface boundary condition

lim
ε→+0

[(f + iε− iF∂/∂x)2 − ∂/∂z]G = 0 (3)

where f = ω
√
L/g and F = U/

√
gL. The role of ε in the above equation is to ensure

that the radiation condition is satisfied at the far field, in a manner described by
Lighthill (1978, p. 364).

If we use

1/r = 1/(4π2)

∫ ∞
−∞

dβ

∫ ∞
−∞

dαek|ζ−z|−i[α(ξ−x)+β(η−y)]/k, (4a)

1/r′ = 1/(4π2)

∫ ∞
−∞

dβ

∫ ∞
−∞

dαek(ζ+z)−i[α(ξ−x)+β(η−y)]/k, (4b)

with k =
√
α2 + β2, it is straightforward to obtain (Noblesse & Yang 1995)

4π2GF = lim
ε→+0

∫ ∞
−∞

dβ

∫ ∞
−∞

dα
ek(ζ+z)−i[α(ξ−x)+β(η−y)]

D + iε sign(Df)
(5)

where D is the dispersion function

D = (f − Fα)2 − k. (6a)

The function sign(Df) is given by

sign(Df) = sign(∂D/∂f) = sign(f − Fα). (6b)

Equation (5) is written in terms of the Cartesian variables (α, β) while the classic result
in Wehausen & Laitone (1960) is given in the polar variables (k, θ) with α = k cos θ
and β = k sin θ. In other words, they are the same equations written in a different
manner.

Following the analysis of Noblesse & Chen (1995), equation (5) can be decomposed
as GF = GW + GN with GW being the wave component and GN the non-oscillatory
local component. As GF ≈ GW in the far field, only the wave component GW is
considered below. Along the dispersion curves defined by D = 0, GW can be written
as

4π GW = −i
∑
D=0

∫
D=0

ds(Σ1 + Σ2)e
k(ζ+z)−i[α(ξ−x)+β(η−y)] ds/||∇D|| (7)



80 X.-B. Chen and G. X. Wu

where
∑

D=0 means summation over all the dispersion curves and ||∇D||2 = D2
α + D2

β .
The function Σ1 = sign(Df) is associated with the limit ε→ +0 in (5) and Σ2 is given
as, following Noblesse & Chen (1995),

Σ2 = sign[(ξ − x)Dα + (η − y)Dβ]. (8)

The dispersion curves defined, in the plane (α, β), by the dispersion relation D = 0,
or

(f − Fα)2 − k = 0 (9)

are symmetric with respect to β = 0 so that only that in the upper half-plane given
by

β =
√

(Fα− f)4 − α2 (10)

is considered below.
It can be shown based on equation (10) that three or two dispersion curves exist

depending on whether τ = fF = ωU/g is smaller or larger than 1/4, respectively.
For τ < 1/4, the three dispersion curves intersect the axis β = 0 at four values of α,

which are denoted α±i and α±o , and given by

F2α±i = τ± (1/2−√1/4± τ), (11a)

F2α±o = τ± (1/2 +
√

1/4± τ). (11b)

Two open dispersion curves are located in the regions −∞ < α 6 α−o and α+
o 6 α < ∞,

and an inner closed dispersion curve in the region α−i 6 α 6 α
+
i . For τ > 1/4, only

two open dispersion curves exist and are located in the regions −∞ < α 6 α+
i and

α+
o 6 α < ∞.
The main interest here is in the integral along the open dispersion curves, as they

are the reason for the singular and highly oscillatory behaviour. To analyse these
integrals, it is useful to adopt the Fourier variables scaled by F2 so that equation (10)
can be written as

F2β =
√

(F2α− τ)4 − (F2α)2.

If we further define

(a , b) = (F2α− τ , F2β) (12)

and c = F2k, the dispersion relation in equation (9) can be written

c = F2k =
√

(a+ τ)2 + b2 = a2. (13)

Based on the definitions of the new variables, equation (10) can now be written

b =
√
a4 − a2 − 2τa− τ2. (14)

The two open dispersion curves defined by this equation are located in −∞ < a 6 a−
and a+ 6 a < ∞ where

a− =

{ −√1/4− τ− 1/2 if τ 6 1/4

−√1/4 + τ+ 1/2 if τ > 1/4
and a+ =

√
1/4 + τ+ 1/2. (15)

It can be easily verified that a− 6 −(
√

2 − 1)/2 and a+ > 1. At τ = 0, the open
dispersion curves are symmetrical with respect to a = 0 and −a− = 1 = a+.
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3. Analysis of the singular and highly oscillatory wave component
In (7), Σ1 = sign(−a) = ±1 for the left (a 6 a−) and right (a > a+) dispersion

curves, respectively. In (8) for Σ2, it can be verified that sign(Dα) = sign(Da) = ∓1
for a 6 a− and a > a+ respectively and Dβ is finite. Since only the downstream wave
component (ξ < x) and near the track of the source (η − y) → 0, is considered, we
have

Σ2 =

{
+1 for a 6 a−

−1 for a > a+.
(16)

Along the dispersion curve, D = 0 gives Dα + Dβ(dβ/dα) = 0. Thus

ds/||∇D|| = √
(dα)2 + (dβ)2

/√
D2
α + D2

β = dα/|Dβ | = dα(k/β) = F−2da(c/b).

Then the wave component associated with the two open dispersion curves becomes

2πF2 GW = −i

(∫ a−

−∞
−
∫ ∞
a+

)
c

b
(E+ + E−) da (17)

where E± are given by

E± = ek(ζ+z)−i[α(ξ−x)±β(η−y)] = exp[Zc− iX(a+ τ)− iY ±b],

with

(X ,Y , Z ) = (ξ − x, η − y, ζ + z)/F2, X < 0, Y ± = ±Y
and Y > 0 is assumed because of symmetry.

It can be verified in equation (17) that if Z = 0, the integrand does not tend to
zero when |a| → ∞. The implication is that GW may be singular on the free surface
if the source is located on z = 0. To analyse such behaviour, we write

2πF2GW = 2πF2(GW −HW ) + 2πF2HW (18)

where

2πF2 HW = −i

(∫ a−

−∞
−
∫ ∞
a+

)
(E+ + E−)da. (19)

It can be shown that 2πF2(GW −HW ) is finite. In fact, taking
∫ ∞
a+ (c/b− 1)E+da as an

example, we have∣∣∣∣( cb − 1
)
E+

∣∣∣∣ 6 ∣∣∣∣c− bb
∣∣∣∣ =

c2 − b2

b(c+ b)
=
a2 − 2τa− τ2

b(c+ b)
.

The last term of the above equation clearly shows that it decays at a rate proportional
to 1/a2 since b→ c = a2 for |a| → ∞ as can be seen from (14), which means that the
result of the integration is finite. Therefore, we need consider only the last term of
equation (18).

We further write

2πF2 HW = 2πF2(HW −GW0 −GW1 ) + 2πF2GW0 + 2πF2GW1 (20)

where

2πF2GW0 = −i

(∫ a−

−∞
−
∫ ∞
a+

)
(E+ + E−)da, (21)
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2πF2GW1 = τY

(∫ a−

−∞
−
∫ ∞
a+

)
(E+ − E−)/ada, (22)

and

E± = exp[−(−Z + iY ±)a2 − iXa− i(τX − Y ±/2)]. (23)

To show the term in the brackets on the right-hand side of equation (20) is finite, we
consider ∫ ∞

a+

(E+ − E+ − iτY E+/a)da (24)

as an example. Using the definitions of E+ and E+, the integrand of the above
equation becomes

|E+ − E+ − iτY E+/a| = |E+{exp[−iY (b− a2 + 1/2)]− 1− iτY /a}|
6 | exp[−iY (b− a2 + 1/2)]− 1− iτY /a|. (25)

We now consider the limit

L = lim
a→∞

exp[−iY (b− a2 + 1/2)]− 1− iτY /a

1/a2

= lim
a→∞

exp[−iY (−2τa− τ2 − 1/4)/(b+ a2 − 1/2)]− 1− iτY /a

1/a2

= lim
a→∞

exp(iτY /a)− 1− iτY /a

1/a2

= lim
s→0

exp(iτY s)− 1− iτY s

s2
with s = 1/a

= −(τY )2/2.

Thus the left-hand side of equation (25) decays to zero at a rate not less than
1/a2, which means equation (24) in finite. Therefore the analysis can be focused on
equations (21) and (22) only.

By using (23) in (21), GW0 can be written

2πF2GW0 = −ie−iτX

(∫ a−

−∞
−
∫ ∞
a+

)[
e−(−Z+iY )a2−iXa+iY /2 + e−(−Z−iY )a2−iXa−iY /2

]
da. (26a)

The integration limits (−∞, a−] can be converted into [−a−,∞) by changing the

integral variable and so G̃W0 can be expressed as

2πF2GW0 = −ie−iτX
(
I1

0 + I2
0 − I3

0 − I4
0

)
(26b)

where

I1
0 = I0(−Z + iY , −iX/2, −iY /2, −a−),

I2
0 = I0(−Z − iY , −iX/2, +iY /2, −a−),

I3
0 = I0(−Z + iY , +iX/2, −iY /2, +a+),

I4
0 = I0(−Z − iY , +iX/2, +iY /2, +a+),

and the function I0(p, q, r, t0) is defined by (B 1a) in Appendix B, with its asymptotic
properties at large values of |w| = |(pt0 + q)/

√
p| being given by (B 2), depending on
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| arg(w)|. For a finite value of q 6= 0, it can be written that

arg[(pt0 + q)/
√
p ] = arg(q/

√
p) (27)

as |p| → 0. Thus the phase value of (q/
√
p) is considered in the following asymptotic

analysis.
The following variables are introduced:

H =
√

(−Z)2 + Y 2 and θ = arctan[Y /(−Z)] (28)

and because only Y > 0 is considered, 0 6 θ 6 π/2, as −Z > 0. The phase values of
(q/
√
p) corresponding to In0 (n = 1, · · · , 4) are respectively

π/4 6 | arg(q/
√
p)I1

0
| 6 π/2, π/2 6 | arg(q/

√
p)I2

0
| 6 3π/4,

π/2 6 | arg(q/
√
p)I3

0
| 6 3π/4, π/4 6 | arg(q/

√
p)I4

0
| 6 π/2,

noting that X < 0 has been assumed. Here we consider the case when
|q/√p| → ∞ based on Appendix B, and the asymptotic expansion will be domi-
nated by the terms with phase values of (q/

√
p) larger than π/2. This means that

only I2
0 and I3

0 have to be retained here. Thus

GW0 ≈ G̃W0
where

G̃W0 =
−ie−iτX

2πF2

(√
π

−Z − iY
e−X

2/[4(−Z−iY )]−iY /2 −
√

π

−Z + iY
e−X

2/[4(−Z+iY )]+iY /2

)
,

(29a)

which can be rearranged by using (28)

G̃W0 =
exp[ZX2/(4H2)− iτX]

F2
√
πH sin

[
(θ − Y )/2− Y X2/(4H2)

]
. (29b)

The above expression captures the behaviour of high oscillation with indefinitely
increasing amplitude and indefinitely decreasing wavelength, since

G̃(X,Y ) = G̃W0 (Z = 0) =
e−iτX

√
πF2

Y −1/2cos

(
X2

4Y
+
Y

2
+
π

4

)
. (30)

On the other hand, when Z < 0 and Y → 0, equation (29b) has a finite value. Indeed,

the amplitude of G̃W0 in (29b) is given by

exp[ZX2/(4H2)]

F2
√
πH (31a)

which is proportional to O(Y −1/2) if Z = 0, i.e. singular as Y → 0, and is finite as
Y (< −Z) → 0 if Z < 0. Thus, the limit is non-uniform and depends on whether

θ = π/2 (Z = 0) or θ<π/2 (Z < 0). Another point here is G̃W0 does not decay with
X when Z = 0 but decays exponentially when Z < 0.

The oscillatory behaviour in (29b) is demonstrated through the triangular function
with the following variable:

−Y X2/(4H2) (31b)

which gives an increasing wavenumber X2/(4Y 2) as Y → 0. This means that G̃W0
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Figure 1. (a) Singular and highly oscillatory term of the wave component expressed by (34) at
τ = 0, X = −8 and Z = 0. (b) Highly oscillatory term of the wave component given by (34)
at Z = −0.0004. (c) Highly oscillatory term of the wave component given by (34) at Z = −0.004.

oscillates more and more rapidly as Y → 0, i.e. when a field point tends to the track
of the source point located close to or at the free surface. This singular (when Z = 0)

and highly oscillatory behaviour of G̃W0 is shown graphically in figure 1 which depicts

G̃W0 (Y ) at Z = 0 (figure 1a), Z = −0.0004 (figure 1b) and Z = −0.004 (figure 1c),
when X = −8, F = 1/2 and τ = 0 (see below for τ 6= 0).

Another interesting feature of the asymptotic expression (29b) is that the result at
τ 6= 0 can be obtained by multiplying the result at τ = 0 with

exp(−iτX). (31c)

This remarkable result is due to the fact that the parabola b + 1/2 = a2 is the
leading term of the asymptotic expansion for open dispersion curves (see equations
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(14) and (25)) and a = F2α− τ represents a simple shift (τ, 0) of the plane F2(α, β). A
shift of the origin of the Fourier plane to (α0, β0) yields an oscillatory factor of type
exp[−i(α0x+ β0y)].

In a similar way, the component GW1 defined by (22) can be written as

2πF2GW1 = τY e−iτX

(∫ a−

−∞
−
∫ ∞
a+

)[
e−(−Z+iY )a2−iXa+iY /2 − e−(−Z−iY )a2−iXa−iY /2

]
/a da,

(32a)
which can again be expressed as

2πF2GW1 = τY e−iτX
(−I1

1 + I2
1 − I3

1 + I4
1

)
(32b)

with

I1
1 = I1(−Z + iY , −iX/2, −iY /2, −a−),

I2
1 = I1(−Z − iY , −iX/2, +iY /2, −a−),

I3
1 = I1(−Z + iY , +iX/2, −iY /2, +a+),

I4
1 = I1(−Z − iY , +iX/2, +iY /2, +a+),

where the function I1(p, q, r, t0) is defined by (B 3a) in Appendix B, and its asymptotic
properties are given by (B 10), in terms of arg(q/

√
p). The phase values of (q/

√
p) for

In1 (n = 1, . . . , 4) are

π/4 6 | arg(q/
√
p)I1

1
| 6 π/2, π/2 6 | arg(q/

√
p)I2

1
| 6 3π/4,

π/2 6 | arg(q/
√
p)I3

1
| 6 3π/4, π/4 6 | arg(q/

√
p)I4

1
| 6 π/2.

Applying equation (B 10) in the Appendix B to (32a), we can see that the term of
the exponential integral will be of O(Y ) when Y → 0 due to cancellation. The major
contribution is then from I2

1 and I3
1 which have phase values larger than π/2 and are

of O(
√
Y ). Therefore, GW1 ≈ G̃W1 where

G̃W1 =
τY e−iτX

2
√
πF2

(√−Z − iY

iX/2
e−X

2/[4(−Z−iY )]−iY /2 +

√−Z + iY

iX/2
e−X

2/[4(−Z+iY )]+iY /2

)
,

(33a)

which can be rearranged by using (28)

G̃W1 = −i2τexp[ZX2/(4H2)− iτX]

F2
√
π/H(X/Y )

cos
[
(θ + Y )/2 + Y X2/(4H2)

]
. (33b)

This equation shows that G̃W1 is also highly oscillatory due to the triangular function

of variable Y X2/(4H2) as H→ 0, similar to G̃W0 in (29b). The difference is that G̃W1
is not singular and it goes to zero at a rate proportional to Y 3/2.

Therefore, the far-field wave component GW can be approximated by

GW ≈ G̃W
as Y → 0, where the highly-oscillatory and singular term G̃W is defined by

G̃W = G̃W0 + G̃W1 .



86 X.-B. Chen and G. X. Wu

By using (29b) and (33b), this becomes

G̃W =eZX
2/(4H2)−iτX

(
sin[(θ−Y )/2−Y X2/(4H2)]

F2
√
πH − i2τ

cos[(θ+Y )/2+Y X2/(4H2)]

F2
√
π/H(X/Y )

)
.

(34)
It is interesting to see that equation (34) reduces to the following form:

G̃W =
exp[ZX2/(4H2)]

F2
√
πH sin[(θ − Y )/2− Y X2/(4H2)] (35)

when τ = 0. This result may be compared with that of Ursell (1960, 1988) for the
steady Neumann–Kelvin problem. It can be found that the sine function is in full
agreement. There is a difference in the amplitude, but this is because Ursell’s result
is for a moving pressure while equation (35) is for a moving source. When the
relationship between moving pressure and a moving source is used, the result here is
identical to Ursell’s.

The behaviour of (34) is shown by figure 2 which depicts the real part (a) and
imaginary part (b) of the wave component GW for τ = 1/2 = F , X = −20 and
Z = −0.002. The thin solid lines represent the wave component GW evaluated by
using the single integral in equation (7) along the corresponding open dispersion
curves. Extremely rapid oscillation of GW with large amplitude is evident, as expected
from the above analysis. The difference between the wave component GW and the
first leading term of asymptotic expansion (34), i.e.

GW − G̃W0 ,
is represented by the thick solid lines in figure 2. It can be seen that GW − G̃W0 has
much smaller amplitude. The dashed lines in figure 2 represent the difference between
the wave component GW and its asymptotic expansion G̃W given by (34), i.e.

GW− G̃W = GW−
(
G̃W0 + G̃W1

)
.

The result shows that the oscillation of GW−G̃W is hardly noticeable. This means that
G̃W is an excellent approximation for capturing the singular and highly-oscillatory
behaviour of GW .

4. Discussion and conclusions
The above analysis is based on the asymptotic behaviour of the complex error

function Cef(w) given in Appendix A as |w| = |(pt0 + q)/
√
p| → ∞; p, q and t0 are

related to variables of In0 and In1 (n = 1, . . . , 4) in equations (26b) and (32b) respec-
tively. Thus it is essential to assume X 6= 0 if Y → 0 gives |w| → ∞. This means that
the result obtained here is valid only when the field point is near the source track but
not close to the source.

The wave component GW is defined by (7) through a single integral along closed
and open dispersion curves. The wave system associated with a closed dispersion
curve is not singular as the integrand is finite. The wave systems associated with open
dispersion curves can be singular and highly oscillatory, depending on the position
of the field and source points. The singular and highly-oscillatory behaviour can be
captured by GW0 and GW1 in equations (21) and (22). The remaining part of the wave
component may be oscillatory under the same condition but its amplitude tends to



Properties of the Green function for ship motion 87

(a)

YF2

[W

(b)

2

1

0

–1

–2
0 0.1 0.2 0.3 0.4 0.5

[W

2

1

0

–1

–2
0 0.1 0.2 0.3 0.4 0.5

˜

˜

Figure 2. Real part (a) and imaginary part (b) of the wave component. The parameters of the
computation are τ = 1/2 = F , Z = −0.002 and X = −20. The thin lines represent the wave
component obtained by the single integral (7) associated with the open dispersion curves. The
thicker lines represent the values of the wave component after subtraction of the first term in (34).
The dashed curves show the values of the wave component after subtraction of both terms of
(34) – the asymptotic expansions of the wave component associated with the open dispersion
curves.

zero. Therefore, it is far less problematic in the numerical computation than GW0
and GW1 .

The complex nature of the wave component captured by GW0 gives insight into the
difficulty in the numerical prediction of the motion of a ship advancing in waves.
A commonly used method is to convert the Laplace equation in the fluid domain
into an integral equation over the boundary of the fluid domain, by using the Green
function. The integration over the free surface is further transformed into two line
integrals: one at infinity and another along the waterline of the ship (Brard 1972).
The former is often ignored in the analysis. Such a practice may have to be justified,
especially when both source and field points are on the free surface. Even when the
velocity potential can be represented by a source distribution over the body surface
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and along the waterline, a stable numerical solution is still not easy to achieve because
of difficulty when calculating the Green function.

An alternative to this Green function method is the Rankine source method
(Nakos & Sclavounos 1990). It avoids the difficulty of evaluating a function like GW

in equation (7) as the Green function used now is simply 1/r. But as the sources are
distributed over the free surface, only those wave components with wavelength much
larger than the panel size can be modelled in the analysis. Also it is quite uncertain
what the radiation condition is and how it should be imposed if the wave feature
described in this paper is to be captured.

It should be noticed that the Green function given in equations (1)–(3) is based on
the linear theory. One of the assumptions used in this theory is that the wave height is
much smaller than the wavelength. Such a condition is clearly not satisfied by G when
the source is located near or on the free surface. Therefore, it may be argued that the

feature shown through G̃W0 in equation (29a) is a result of linearization. When the
nonlinear term is included, the wave feature may be quite different. Even based on
the framework of the linear theory, the wave behind a ship is due to some continuous
distribution of sources, which may give a wave structure different from that due to a
single source. It is expected that the results of the present study will help to resolve
these difficult issues.

The authors are grateful to Professor F. Ursell for his most valuable comments on
an early version of the paper.

Appendix A. Complex error function
The complex error function is defined by

Cef(w) = wew
2

∫ ∞
w

e−t
2

dt = wew
2

√
π

2
[1− erf(w)] (A 1)

where erf(w) is the usual error function defined by (7.1.1) in Abramowitz & Stegun
(1964). It follows from (7.1.5) in Abramowitz & Stegun (1964) that Cef(w) can be
expressed by a series expansion

Cef(w) = wew
2

(√
π/2−

∞∑
n=0

(−1)nw2n+1

n!(2n+ 1)

)
(A 2)

valid when |w| < ∞. To find an asymptotic expansion of Cef(w) for large |w|, inte-
gration by parts is performed repeatedly on equation (A 1). This gives

Cef(w) =
1

2
− 1

22w2
+

1× 3

23w4
− · · ·+ (−1)n

1× 3× 5 · · · (2n− 1)

2n+1w2n
+ Rn(w) (A 3)

where Rn(w) is the remainder after n terms and is defined by

Rn(w) = (−1)n+1 1× 3× 5 · · · (2n+ 1)

2n+1
wew

2

∫ ∞
w

e−t2

t2n+2
dt. (A 4a)

To estimate Rn(w) with w = u + iv, let | arg(w)| 6 π/2, and choose the path of
integration in (A 4a) to be the infinite line segment beginning at the point t = w and
parallel to the real axis, i.e. t = T + iv with u 6 T < ∞ along which

|ew2−t2 | = eu
2−T 2

and |t|−(2n+2) 6 |w|−(2n+2).
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Therefore

|Rn(w)| 6 1× 3× 5 · · · (2n+ 1)

2n+1|w|2n+1

∫ ∞
u

eu
2−T 2

dT 6
√
π

1× 3× 5 · · · (2n+ 1)

2n+2|w|2n+1
(A 4b)

where the relation ∫ ∞
u

eu
2−T 2

dT =

√
π

2
eu

2[
1− erf(u)

]
6
√
π/2 (A 5)

has been used. Thus as |w| → ∞ the product w2nRn(w) converges uniformly to zero
if | arg(w)| 6 π/2. Under this condition, the asymptotic expansion of Cef(w) may be
written as

Cef(w) =
1

2
+

∞∑
n=1

(−1)n
1× 3× 5 · · · (2n− 1)

2(2w2)n
(A 6)

whose error is less than the value estimated by (A 4b).
For | arg(w)| > π/2, the identity

Cef(w) = Cef(−w) +
√
πwew

2

(A 7)

can be used. Since | arg(−w)| < π/2, (A 6) is applicable to Cef(−w). The above
equation (A 7) can also be verified directly by using the series expansion in (A 2).

In brief, the limit value of Cef(w) as |w| → ∞ can be expressed as

lim
|w|→∞

Cef(w) =

{
1/2 + O(w−2), | arg(w)| 6 π/2
1/2 +

√
πwew

2

+ O(w−2), | arg(w)| > π/2.

}
(A 8)

Note that the limit of Cef(w) at |w| → ∞ is continuous for | arg(w)| = π/2, as
√
πwew

2

tends to zero at |w| → ∞ if | arg(w) = π/2|.

Appendix B. Integrals related to the complex error function
One elementary integral related to the above complex error function is given in

(7.4.32) of Abramowitz & Stegun (1967) and expressed here by using Cef(w) given
in Appendix A

I0(p, q, r, t0) =

∫ ∞
t0

e−(pt2+2qt+r)dt = e−(r−q2/p)

∫ ∞
t0

e−(pt+q)2/p dt (B 1a)

=
e−(pt20+2qt0+r)

pt0 + q

(
pt0 + q√

p
e(pt0+q)2/p

∫ ∞
(pt0+q)/

√
p

e−u
2

du

)

=
e−(pt20+2qt0+r)

pt0 + q
Cef[(pt0 + q)/

√
p]. (B 1b)

When |w| = |(pt0 + q)/
√
p| → ∞, equation (A 8) leads to

I0(p, q, r, t0) =

{
1
2
e−(pt20+2qt0+r)/(pt0 + q), | arg(w)| 6 π/2

1
2
e−(pt20+2qt0+r)/(pt0 + q) + (

√
π/p)eq

2/p−r, | arg(w)| > π/2.
(B 2)

The second term on the right-hand side of (B 2) is of form O(eq
2/p/
√
p) as |q/√p| → ∞

and independent of the value of the lower limit t0 of the integral.
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Another integral involved in the asymptotic analysis in this paper is of the form

I1(p, q, r, t0) =

∫ ∞
t0

e−(pt2+2qt+r)/t dt (B 3a)

which can be rewritten as

I1(p, q, r, t0) =

∫ p

0

F(u) du+ I1(0, q, r, t0) (B 3b)

in which the path of integration may be taken as a straight line from 0 to p, and

F(u) = ∂I1(u, q, r, t0)/∂u = −
∫ ∞
t0

t e−(ut2+2qt+r) dt = −e−(ut2+2qt+r)

2u
+
(q
u

)
I0(u, q, r, t0).

(B 4)

Our main interest here is to analyse I1(p, q, r, t0) when p → 0 which gives u → 0.
From equation (B 2), it can be seen that the two terms of the right-hand side of (B 4)
cancel each other when | arg[(ut0 + q)/

√
u]| 6 π/2. For | arg[(ut0 + q)/

√
u]| > π/2,

equation (B 2) leads to

F(u) =
(q
u

)√
π e−r

exp(q2/u)√
u

. (B 5)

Thus, we may estimate the first term on the right-hand side of (B 3b) as

I0
1 =

∫ p

0

F(u) du =
√
π qe−r

∫ p

0

exp(q2/u)

u
√
u

du = 2
√
π e−r

∫ ∞q/√p
q/
√
p

exp(t2)dt (B 6)

where we have changed the integral variable u = (q/t)2. Furthermore, we are interested
only in the case when π/2 6 arg(q/

√
p) 6 3π/4 and −3π/4 6 arg(q/

√
p) 6 −π/2

because of In1 (n = 1, . . . , 4) in equation (32b). If we use v = ∓it for these two cases
respectively, equation (7.2.14) of Abramowitz & Stegun gives

I0
1 = πe−r(±i)erfc(∓iq/

√
p). (B 7)

Subsequently equation (7.2.14) of Abramowitz & Stegun gives

I0
1 ≈ −(

√
πp/q) exp(q2/p− r). (B 8)

The second term on the right-hand side of (B 3b) is evaluated by

I1(0, q, r, t0) = e−r
∫ ∞
t0

e−2qt/t dt = e−r
∫ ∞

1

e−2qt0u/u du = e−rE1(2qt0) (B 9)

in which E1(w) is the exponential integral function defined by (5.1.4) in Abramowitz
& Stegun. Thus

I1(p, q, r, t0) =

{
e−rE1(2qt0), | arg[(pt0 + q)/

√
p ]| 6 π/2

e−rE1(2qt0)− (
√
πp/q) exp(q2/p− r), | arg[(pt0 + q)/

√
p ]| > π/2.

(B 10)
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